近期成果
近期论文

Factors influencing soil enzyme activity in China’s forest ecosystems

来源:|作者:Haifeng Zheng, Yang Liu, Jian Zhang, Yamei Chen, Lin Yang, Hongjie Li, Lifeng Wang|点击:

  

Abstract: Enzyme activity (EA) mediates soil organic matter (SOM) degradation, transformation, and mineralization, thereby maintaining the biogeochemical cycles and energy flow of ecosystems. To determine the main factors explaining EA variations in China’s forest ecosystems, we created a database of soilEAs and relevant variables using data from the literature and analysed relationships between EAs and both climatic and edaphic variables. Catalase, phenol oxidase, acid (alkaline) phosphatase, and protease activities differed significantly among different types of forests. Catalase and urease activities were generally higher in primosols, cambisols, and argosols than in ferrosols. EA largely decreased with soil depth and increased with SOM. Phenol oxidase and urease activities were negatively correlated with mean annual temperature (MAT); in contrast, catalase, invertase, and protease activities first decreased (< 2.5 ℃), increased (2.5–17.5 ℃), and then decreased (> 17.5  ℃) with increasing MAT. Although protease activity was slightly positively correlated with mean annual precipitation (MAP), catalase, phenol oxidase, and urease activities were all negatively related to MAP. Catalase, invertase, acid (alkaline) phosphatase, urease, and protease activities first increased (< 2000 m.a.s.l.) and then decreased (2000–4100 m.a.s.l.) with increasing elevation. Principal component analysis revealed most EAs to be correlated with climate conditions and soil pH. These findings suggest that climatic and edaphic variables directly and indirectly correlate with forest type and greatly impact soil EA. 


Keywords: Enzyme activity; Soil organic matter; Soil profile; Forest type; Climatic factors


郑海峰-plant ecology见刊.pdf




返 回 赞一个 顶 部